Inference with Few Heterogenous Clusters

نویسندگان

  • Rustam Ibragimov
  • Ulrich K. Müller
چکیده

Consider inference with a small number of potentially heterogeneous clusters. Suppose estimating the model on each cluster yields q asymptotically unbiased, independent Gaussian estimators with potentially heterogeneous variances. Following Ibragimov and Müller (2010), one can then conduct asymptotically valid inference with a standard t-test based on the q cluster estimators, since at conventional signi…cance levels, the small sample t-test remains valid under variance heterogeneity. This note makes two contributions. First, we establish the new corresponding small sample result for the two-sample t-test under variance heterogeneity. One can therefore apply t-statistic based inference also for comparisons of parameters between two populations, such as treatment and control groups, or preand post-structural break data. Second, we develop a test for the appropriate level of clustering, with the null hypothesis that clustered standard errors from a …ne partition are correct, against the alternative that only q clusters provide asymptotically independent information. JEL classi…cation: C12, C14, C32

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomization Inference for Differences-in- Differences with Few Treated Clusters

Inference using di erence-in-di erences with clustered data requires care. Previous research has shown that, when there are few treated clusters, t tests based on a clusterrobust variance estimator (CRVE) severely over-reject, di erent variants of the wild cluster bootstrap can over-reject or under-reject dramatically, and procedures based on randomization inference show promise. We demonstrate...

متن کامل

Scalable Inference for Latent Dirichlet Allocation

We investigate the problem of learning a topic model – the well-known Latent Dirichlet Allocation – in a distributed manner, using a cluster of C processors and dividing the corpus to be learned equally among them. We propose a simple approximated method that can be tuned, trading speed for accuracy according to the task at hand. Our approach is asynchronous, and therefore suitable for clusters...

متن کامل

A Practitioner's Guide to Cluster-Robust Inference

We consider statistical inference for regression when data are grouped into clusters, with regression model errors independent across clusters but correlated within clusters. Examples include data on individuals with clustering on village or region or other category such as industry, and state-year di erences-in-di erences studies with clustering on state. In such settings default standard erro...

متن کامل

TR 09 - 002 Mixed - Membership Naive Bayes Models

In recent years, mixture models have found widespread usage in discovering latent cluster structure from data. A popular special case of finite mixture models are naive Bayes models, where the probability of a feature vector factorizes over the features for any given component of the mixture. Despite their popularity, naive Bayes models suffer from two important restrictions: first, they do not...

متن کامل

New Approach for Customer Clustering by Integrating the LRFM Model and Fuzzy Inference System

This study aimed at providing a systematic method to analyze the characteristics of customers’ purchasing behavior in order to improve the performance of customer relationship management system. For this purpose, the improved model of LRFM (including Length, Recency, Frequency, and Monetary indices) was utilized which is now a more common model than the basic RFM model apt for analyzing the cus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013